Lecture 07:
Functions

Part 2 of 2



Outline for Today

* Recap from Last Time
 Where are we, again?
A Proof About Birds
* Trust me, it’s relevant.
« Assuming vs Proving
« Two different roles to watch for.
 Connecting Function Types

* Relating the topics from last time.
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Is it a function?  Yes!

Is it an injection? No.

Is it a surjection? No.
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Involutions

« Afunctionf: A - A from a
set back to itself is called
an involution when the @
following first-order logic ”
statement is true about f:

Vx € A. f(f(x)) = x.

(“Applying f twice is
equivalent to not applying
fatall.”)

 For example, f: R—-> R
defined as f(x) = -x is an
involution.




To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—- B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Also prove B.

AV B

Either prove —-A — B or
prove =B — A.
(Why does this work?)

Ao B

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.




New Stuff!



A Proof About Birds



Theorem: If all birds have feathers,
then all herons have feathers.



Theorem: If all birds have feathers, then all
herons have feathers.

Given the predicates

Bird(b), which says b is a bird;
Heron(h), which says h is a heron; and
Feathers(x), which says x has feathers,

translate the theorem into first-order logic.

Answer at
https://cs103.stanford.edu/pollev
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Theorem: If all birds have feathers, then all
herons have feathers.

Given the predicates

Bird(b), which says b is a bird;
Heron(h), which says h is a heron; and
Feathers(x), which says x has feathers,

translate the theorem into first-order logic.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N— g N —

ki ¥

All birds All herons
have feathers have feathers




To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—- B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Also prove B.

AV B

Either prove —-A — B or
prove =B — A.
(Why does this work?)

Ao B

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.




To prove that
this is true...

Have the reader pick an
VX. A arbitrary x. We then prove A is
true for that choice of x.

Find an x where A is true.

HX. A Then prove that A is true for
that specific choice of x.
Assume A is true, then
A — B prove B is true.
A A B Prove A. Also prove B.
1 . —_ Either prove —=A — B or
(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))
All birds All herons

have feathers have feathers




Assume A is true, then
A — B prove B is true.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))
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Theorem: If all birds have feathers, then all
herons have feathers.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))
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Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N g N —

ki ¥

All birds All herons
have feathers have feathers




Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

Which makes more sense as the
Answer at next step in this proot?

https://cs103.stanford.edu/pollev 1. Consider an arbitra]_"y bird b.
2. Consider an arbitrary heron h.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N g N —

ki ¥

All birds All herons
have feathers have feathers
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Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

1. Consider an arbitrary bird b.
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Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

Consider an arbitrary bird b.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))
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Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

Consider an arbitrary bird b. Since b is a
bird, b has feathers.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N g N —

ki ¥

All birds All herons
have feathers have feathers




Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

Consider an arbitrary bird b. Since b is a
bird, b has feathers. | and now we’re
stuck! we are interested in herons, but b
might not be one. It could be a
hummingbird, for example! ]

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N g N —
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All birds All herons
have feathers have feathers




Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

Which makes more sense as the
next step in this proof?

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N g N —
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All birds All herons
have feathers have feathers




Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

2. Consider an arbitrary heron h.
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Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

Consider an arbitrary heron h.
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Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

Consider an arbitrary heron h. We will
show that h has feathers.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N g N— e’
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All birds All herons
have feathers have feathers




Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

Consider an arbitrary heron h. We will
show that h has feathers. To do so, note
that since h is a heron we know h is a bird.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N g N— e’
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All birds All herons
have feathers have feathers




Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

Consider an arbitrary heron h. We will
show that h has feathers. To do so, note
that since h is a heron we know h is a bird.
Therefore, by our earlier assumption, h has

feathers.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))
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All birds All herons
have feathers have feathers




Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

Consider an arbitrary heron h. We will
show that h has feathers. To do so, note
that since h is a heron we know h is a bird.
Therefore, by our earlier assumption, h has

feathers. B
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Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

Consider an arbitrary heron h. We will
show that h has feathers. To do so, note
that since h is a heron we know h is a bird.
Therefore, by our earlier assumption, h has

feathers. B

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N g N— e’

T ¥

We never introduce a We introduce a variable h
variable b. almost immediately.




Proving vs. Assuming

* In the context of a proof, you will need to
assume some statements and prove others.

e Here, we assumed all birds have feathers.
 Here, we proved all herons have feathers.

« Statements behave differently based on
whether you’'re assuming or proving them.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N g N— e’

T ¥

We never introduce a We introduce a variable h
variable b. almost immediately.




Proving vs. Assuming

* To prove the universally-quantified statement
Vx. P(x)

we introduce a new variable x representing some
arbitrarily-chosen value.

 Then, we prove that P(x) is true for that variable x.

* That’s why we introduced a variable h in this proof
representing a heron.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N g N

T Y

We never introduce a We introduce a variable h
variable b. almost immediately.




Proving vs. Assuming

e If we assume the statement
Vx. P(x)
we do not introduce a variable x.

 Rather, if we find a relevant value z somewhere else in
the proof, we can conclude that P(2) is true.

 That’s why we didn’t introduce a variable b in our proof,
and why we concluded that h, our heron, have feathers.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N g N

T Y

We never introduce a We introduce a variable h
variable b. almost immediately.




To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—- B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Also prove B.

AV B

Either prove —-A — B or
prove =B — A.
(Why does this work?)

Ao B

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.




If you assume
this is true...

To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—- B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Also prove B.

AV B

Either prove —-A — B or
prove =B — A.
(Why does this work?)

Ao B

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.




If you assume
this is true...

To prove that
this is true...

Vx. A

Initially, do nothing. Once you
find a z through other means,
you can state it has property A.

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—- B

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Assume A is true, then
prove B is true.

ANMNB

Prove A. Also prove B.

AV B

Either prove —-A — B or
prove =B — A.
(Why does this work?)

Ao B

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.




If you assume
this is true...

To prove that
this is true...

Vx. A

Initially, do nothing. Once you
find a z through other means,
you can state it has property A.

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Introduce a variable
x into your proof that
has property A.

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—- B

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Assume A is true, then
prove B is true.

ANMNB

Assume A. Also assume B.

Prove A. Also prove B.

AV B

Either prove —-A — B or
prove =B — A.
(Why does this work?)

Ao B

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.




If you assume
this is true...

To prove that
this is true...

Vx. A

Initially, do nothing. Once you
find a z through other means,
you can state it has property A.

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Introduce a variable
x into your proof that
has property A.

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—- B

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Assume A is true, then
prove B is true.

ANMNB

Assume A. Also assume B.

Prove A. Also prove B.

AV B

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Either prove —A — B or
prove =B — A.
(Why does this work?)

Ao B

Assume A - Band B - A.

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.




Connecting Function Types



Types of Functions

 We now have three special types of
functions:

 involutions, functions that undo themselves;

* injections, tunctions where different inputs
go to different outputs; and

* surjections, functions that cover their whole
codomain.

* Question: How do these three classes of
functions relate to one another?



Theorem: For any function f: A - A,
if f'is an involution, then fis surjective.



(Vx €A. fiflx)) =x) — (Yb€A.da€A.fla)=D)

¥ ¥

fis an fis
involution. surjective.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vx €A. fiflx)) =x) — (Yb€A.da€A.fla)=D)

¥ ¥

Assume this. Prove this.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vx €A. fiflx)) =x) — (Yb€A.da€A.fla)=D)

Y i

Assume this. Prove this.

(Vb. (Bird(b) — Feathers(b))) — (Vh. (Heron(h) - Feathers(h)))

N g N —

¥ Y

Assume this. Prove this.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vx € A. flf(x)) = x)

T

Assume this.

If you assume
this is true...

Initially, do nothing. Once you
find a z through other means,
you can state it has property A.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vx € A. flf(x)) = x)

T

Assume this.

Since we're assuming this, we

aren’t going fo pick a specific
choice of x right now, Instead,
we're going To keep an eye
out for something to
apply this fact 1o,

Proof Outline

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vb € A. 3a € A. f(a) = b)

We've said thal we need T
To prove this
statement, How do we Prove this.
do that?

What do you do to prove Proof Outline
Vb € A. [something]?

1. Assume fis an involution.
Answer at

https://cs103.stanford.edu/pollev

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.


https://cs103.stanford.edu/pollev

(Vb € A. 3a € A. f(a) = b)

T

Prove this.

To prove that
this is true...

Have the reader pick an

arbitrary x. Then prove A is Proof Outline
true for that choice of x.

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



N T 7
Thev§’s a universal Prove this.
guantifier up front,
Since we're proving
This, we’ll pick an
arbitrary b € A, Proof Outline

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



N T 7
Thev§’s a universal Prove this.
guantifier up front,
Since we're proving
This, we’ll pick an
arbitrary b € A, Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



Now, we hif an
existential quantifier.
Since we're proving this,
we need fo find a choice
of a € A where this
is True,

Ja € A. fla) = b

- °

Prove this.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



Now, we hif an
existential quantifier.
Since we're proving this,
we need fo find a choice
of a € A where this
is True,

Ja € A. fla) = b

- °

Prove this.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



Theorem: For any functionf: A - A, if fis an
involution, then fis surjective.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any functionf: A - A, if fis an
involution, then fis surjective.

Proof:

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any functionf: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any functionf: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any functionf: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove

that f is surjective. To do so, pick an arbitrary
b € A.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any functionf: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective. To do so, pick an arbitrary

b € A. We need to show that thereisana € A
where f(a) = b.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any functionf: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective. To do so, pick an arbitrary
b € A. We need to show that thereisana € A
where f(a) = b.

Specifically, pick a = f(b).

Proof Outline

. Assume fis an involution.
Pick an arbitrary b € A.
Give a choice of a € A where

fla) = b.

WA=




Theorem: For any functionf: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective. To do so, pick an arbitrary

b € A. We need to show that thereisana € A
where f(a) = b.

Specifically, pick a = f(b). This means that

fla) = f(f(b)), and since fis an involution we know
that f(fib)) = b.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any functionf: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective. To do so, pick an arbitrary

b € A. We need to show that thereisana € A
where f(a) = b.

Specifically, pick a = f(b). This means that
fla) = f(f(b)), and since fis an involution we know
that f(f(b)) = b. Putting this together, we see that
fla) = b, which is what we needed to show.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any functionf: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective. To do so, pick an arbitrary

b € A. We need to show that thereisana € A
where f(a) = b.

Specifically, pick a = f(b). This means that

fla) = f(f(b)), and since fis an involution we know
that f(f(b)) = b. Putting this together, we see that
fla) = b, which is what we needed to show. B

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any functionf: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective. To do so, pick an arbitrary
b € A. We need to show that thereisana € A
where f(a) = b.

Specifically, pick a = f(b). This means that

fla) = f(f(b)), and since fis an involution we know
that f(f(b)) = b. Putting this together, we see that
fla) = b, which is what we needed to show. B

This proot contains
no first—order logic
synfax (quantifiers,
connectives, etc,), I1’s
writfen in plain English,
just as usual,




The Two-Column Proot Organizer



Theorem: Let f: A - A be an involution.
Then fis injective.



Theorem: Let f: A - A be an involution.
Then fis injective.

What We’re Assuming What We Need to Prove
f:A - A is an involution. f is injective.
Vz € A. f(f(2)) = z. Va: € A. Vaz € A. (fla1r) = f(az) —
a1 = dz
)

We need fo prove
this universally—
guantified statement,
So let’s infroduce
arbitrarily—chosen
values,

We're assuming This
universally—gquantified
statement, so we won't
intfroduce a variable
for what's here,




Theorem: Let f: A - A be an involution.
Then fis injective.

What We’re Assuming What We Need to Prove
f:A - A is an involution. f is injective.
Vz € A. f(f(2)) = 2. (flar) = flaz) -
air = dz
)
a € A

a € A




Theorem: Let f: A - A be an involution.
Then fis injective.

What We’re Assuming What We Need to Prove
f:A - A is an involution. f is injective.
Vz € A. f(f(2)) = 2. (flar) = flaz) -
adir = dz
)
a €A
a € A We need fo prove

This implication, So
we assume The antecedent
and prove the consegquent,




Theorem: Let f: A - A be an involution.
Then fis injective.

What We’re Assuming What We Need to Prove

f:A - A is an involution. f is injective.
Vz € A. f(f(2)) = z.

dir = dz
a € A
a € A
fla)) = flaz) Jlar) e e flaz)

Aftar)) =7 T, f(f(az))




Theorem: Let f: A - A be an involution.
Then fis injective.

What We’re Assuming What We Need to Prove
f:A - Ais an involution. f is injective.
Vz € A. f(f(2)) = z.
air = dz
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flai) = flaz) flar) = e flaz)

f(fla1)) = f(flaz))

Aftar)) =~ T, f(f(az))




Theorem: Let f: A - A be an involution.
Then fis injective.
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Theorem: Let f: A - A be an involution.
Then fis injective.

What We’re Assuming What We Need to Prove
f:A - A is an involution. f is injective.
Vz € A. f(f(2)) = z.
air = dz
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Theorem: Let f: A - A be an involution.
Then fis injective.

What We’re Assuming What We Need to Prove
f:A — Ais an involution. f'is injective.
Vz € A. f(f(2)) = z.
air = dz
a €A
az € A
flai) = fla2) flar) = e flaz)

f(fla1)) = f(f(az))
f(fla1)) = ax
f(fla2)) = a-

al ..................... f(f(az))




Theorem: Let f: A - A be an involution.
Then fis injective.

What We’re Assuming

f: A — Ais an involution.

Vz € A. f(f(2)) = z.

ar € A

az € A

flai) = flaz)
f(fla1)) = f(f(az))
f(fla1)) = ax
f(fla2)) = a-

What We Need to Prove

f'is injective.

L )
7(611) ------------- az
.....
.......
s Ny
..........
. [ ]
L 1 ay
aa = ~ 7 - a2



Theorem: Let f: A - A be an involution. Then f
1S Injective.



Theorem: Let f: A - A be an involution. Then f
1S Injective.
Proof:



Theorem: Let f: A - A be an involution. Then f
1S Injective.

Proof: Choose any ai, a2z € A where f(ai) = fl(az).



Theorem: Let f: A - A be an involution. Then f
1S Injective.

Proof: Choose any ai, a2 € A where f(ai1) = flaz). We
need to show that a1 = a-.



Theorem: Let f: A - A be an involution. Then f
1S Injective.

Proof: Choose any ai, a2 € A where f(ai1) = flaz). We
need to show that a1 = a-.

Since f(ai) = f(az), we know that f(f(a1)) = f(f(a2)).



Theorem: Let f: A - A be an involution. Then f
1S Injective.

Proof: Choose any ai, a2 € A where f(ai1) = flaz). We
need to show that a1 = a-.
Since f(ai) = f(az), we know that f(f(a1)) = f(f(a2)).
Because fis an involution, we see a1 = f(f(a1)) and
that f(f(az)) = a-.



Theorem: Let f: A - A be an involution. Then f
1S Injective.

Proof: Choose any ai, a2 € A where f(ai1) = flaz). We
need to show that a1 = a-.

Since f(ai) = f(az), we know that f(f(a1)) = f(f(a2)).
Because fis an involution, we see a1 = f(f(a1)) and
that f(f(az)) = az. Putting this together, we see that

ar = f(fla1)) = f(flaz)) = az,

SO di1 = dz, as needed.



Theorem: Let f: A - A be an involution. Then f
1S Injective.

Proof: Choose any ai, a2 € A where f(ai1) = flaz). We
need to show that a1 = a-.

Since f(ai) = f(az), we know that f(f(a1)) = f(f(a2)).
Because fis an involution, we see a: = f(f(a:1)) and
that f(f(az)) = az. Putting this together, we see that

a: = f(fla1)) = f(fla2)) = a2,

SO d1 = dz, as needed. B

This proof contains
no first—order logic
synfax (quantifiers,
connectives, etc,), It's
writfen in plain English,
just as usual,




Time-Out for Announcements!



Problem Set One Graded

* Your wonderful TAs have finished
grading Problem Set One.

* Grades and feedback are up on the
Gradescope.

» Solutions are available online on the
course website (visit the page tor PS1 to
get the link).



75% Percentile: 67 / 75 (89%)
50t Percentile: 63 / 75 (84%)

Problem Set One Graded
25% Percentile: 58 / 75 (77%)

0-40 41-45 46-50 51-535 56-60 61-65 06066-70 71-75

Pro tips when reading a grading distribution:

1. Standard deviations are unhelpful and discouraging. Ignore them.
2. The average score is a unhelpful. Ignore it.
3. Raw scores are unhelpful and discouraging. Ignore them.




Problem Set One Graded

75% Percentile: 67 / 75 (89%)
50t Percentile: 63 / 75 (84%)
25% Percentile: 58 / 75 (77%)

66-70 71-75

‘6real job: Look over
your feedback tor some
Tips on how to tweak
things for next time,




Problem Set One Graded

75% Percentile: 67 / 75 (89%)
50t Percentile: 63 / 75 (84%)
25% Percentile: 58 / 75 (77%)

61 - 65

“You're almost there! Review
the teedback on your
submission and see what to
focus on tor next fime,*




Problem Set One Graded

75% Percentile: 67 / 75 (89%)
50t Percentile: 63 / 75 (84%)
25% Percentile: 58 / 75 (77%)

51 -55 56-60

“You're on The right Track, but there
are some areas where you need 1o
improve, Review your feedback and ask
us questions when you have Them,”




Problem Set One Graded

75% Percentile: 67 / 75 (89%)
50t Percentile: 63 / 75 (84%)
25% Percentile: 58 / 75 (77%)

- i

0-40 41 -45 46 -50

‘Looks like something hasn't gquife clicked yet,
Get in Touch with us and stop by office hours
fo get some exfra feedback and advice,
Dont get discouraged - you can do This:”




What Not to Think

« “Well, I guess I'm just not good at math.”

« For most of you, this is your first time doing proof-based math.

It is totally normal when learning any new skill to have areas
where you need to improve. And we cover a ton of material here!

* You will improve over the quarter. Hang in there!
» “I got a good score, so I don’t need to review anything.”

* Check your feedback. Make sure you didn’t miss an important detail.

 We let you work in pairs. Be honest with yourself - did you lean too
much on your partner? Could you have done the work unassisted?

 We provide lots of office hours. Be honest with yourself - did you get
too much help from the TAs?
* You will need to be able to solve problems like these solo on
the exams. Put in the time now to patch up any gaps in
your understand



Essential Action Items

* Review your feedback.

 Don’t just look at the raw score. Make sure you really,
truly understand where you need to improve.

* Read the solutions in depth.

 Make sure you understand what we were asking, why
we asked it, and what we wanted you to take away.

* (Especially for Q8, Q10) Look at our solutions and see
if there’s any neat lessons you can draw from them.

« Come to us with questions.

 Anything you’re not sure about? That’s what we’re here
for! Come to office hours, ask questions on EdStem,
etc.



Back to CS103!



Function Composition



f : People - Places g : Places - Prices

» Cupertino, CA ~

San Francisco ~__

Redding, CA

Utqgiagvik, AK

Palo Alto, CA

People Places Prices
h : People - Prices

h(x) = g(f(x))



Function Composition

 Suppose that we have two functions

f:A->Bandg:B-C.

* Notice that the codomain of fis the

domain of g. This means that we can use

outputs from f as inputs to g.

-

fx)
-~ f

g(f(X))>




Function Composition

 Suppose that we have two functions f:A—>Band g: B - C.

« The composition of f and g, denoted g - f, is a function
where

The name of the function is g - f.
*ge°f:A-C, and When we apply it to an input x,

* (g ° H(X) = g(f(x)). we write (g ° f)(x). I don't know
why, but that's what we do.

» A few things to notice:

« The domain of g - fis the domain of f. Its codomain is g’s
codomain.

« Even though composition is written g » f, when evaluating
(g °» N(x), the function fis evaluated first.

 Composition is associative: (f > g) e h = f - (g o h). (Prove
this!)

 Composition is not necessarily commutative: f o g is not
necessarily the same as g ¢ f. (Prove this!)



Properties of Composition



Theorem: If f: A - B is an injection and
g : B = C is an injection, then the function
ge°f:A - Cisan injection.



Theorem: If f: A - B is an injection and
g : B - C is an injection, then the function
ge°f:A - Cisan injection.

What We’re Assuming What We Need to Prove
f:A - B is an injection. g ° fis an injection.
Vx eA.Vy€eEA. (x=2y~— Var € A.Vaz € A. (a1 # az -
i) = fly) (g » Nlar) # (g ° NHla2)
) )

g : B - C is an injection. We need to prove

Vx€EB.VyVEB. (x#y~- this universally—

gx) = gy) guantified statement,
) So let’s introduce
arbitrarily—chosen

We've assuming These
universally—gquantified
stafements, so we won't
infroduce any variables
for what’s here,

values.,




Theorem: If f: A - B is an injection and
g : B - C is an injection, then the function
ge°f:A - Cisan injection.

What We’re Assuming

f:A - B is an injection.

VxeA.VyeA. (xzy~—
) fx) = fly)

g : B — C is an injection.

VxeB.VyeB. (x#y~
) gx) = g(y)

ai € A is arbitrarily-chosen.

dz € A is arbitrarily-chosen.

What We Need to Prove

g ° fis an injection.

Vair € A.Vaz € A. (a1 # az —
| (g ° Na1) # (g ° faz)

We need to prove
this universally—
guantified statement,
So let’s introduce
arbitrarily—chosen

values.,




Theorem: If f: A - B is an injection and
g : B - C is an injection, then the function
ge°f:A - Cisan injection.

What We’re Assuming What We Need to Prove
f:A - B is an injection. g ° fis an injection.
Vx eA.VyeA. (xzy~- (a1 # az =
) = fly) (g » Nlar) # (g ° NHla2)
) )
g : B — C is an injection.
VX €EB.VYyEB. (x #y — Now we're looking af
ax) = gy) an implication, Let’s
) assume The antecedent
a: € A is arbitrarily-chosen. and prove the consequent.

az € A is arbitrarily-chosen.

ai # dz




Theorem: If f: A - B is an injection and
g : B - C is an injection, then the function
ge°f:A - Cisan injection.

What We’re Assuming

f:A - B is an injection.

Vx eA.Vy€eEA. (x=2y~—
) fx) = fly)

g : B — C is an injection.

VxeB.VyveB. (x#y~
) gx) = g(y)

ai € A is arbitrarily-chosen.

dz € A is arbitrarily-chosen.

ai1 # dz

What We Need to Prove

g ° fis an injection.

(g ° N(ar) # (g ° fi(az)

Let’s write this out
separately and simplity
things a bit,




Theorem: If f: A - B is an injection and
g : B - C is an injection, then the function
ge°f:A - Cisan injection.

What We’re Assuming

f:A - B is an injection.

Vx EA.VyeA. (x=#y~—
) fx) = f(y)

g : B — C is an injection.

VxeB.VyeB. (xzy—
) gx) # g(y)

ai € A is arbitrarily-chosen.

dz € A is arbitrarily-chosen.

ai1 # dz

What We Need to Prove

(g ° Nar) # (g ° Haz)



Theorem: If f: A - B is an injection and
g : B - C is an injection, then the function
ge°f:A - Cisan injection.

What We’re Assuming What We Need to Prove

f:A - B is an injection.

Vx eA.Vy€eEA. (x=2y~—
) fx) = fly)

g : B — C is an injection. g(flar)) # g(flaz))

VxeB.VyveB. (x#y~
) gx) #= gy

ai € A is arbitrarily-chosen.
dz € A is arbitrarily-chosen.

ai1 # dz




Theorem: If f: A - B is an injection and
g : B - C is an injection, then the function
ge°f:A - Cisan injection.

What We’re Assuming

f:A - B is an injection.

Vx EA.VyeA. (x=#y~—

) fx) = fly)

g : B — C is an injection.

VxeB.VyeB. (xzy—

) gx) # g(y)

ai € A is arbitrarily-chosen.

dz € A is arbitrarily-chosen.

ai1 # dz

What We Need to Prove

g(flai)) # g(fla=))

b @ >;\(ﬂm»
on
- Ia>) g(f(a2))

A B C



Theorem: If f : A - B is an injection and g : B —» C is an
injection, then the function g - f: A = C is also an
injection.

fia %ﬂm»
oon
- Ia>) g(f(a)



Theorem: If f : A - B is an injection and g : B —» C is an
injection, then the function g - f: A = C is also an
injection.

Proof:

fia %ﬂm»
oon
- Ia>) g(f(a)



Theorem: If f: A - B is an injection and g : B —» C is an
injection, then the function g - f: A = C is also an
injection.

Proof: Let f: A - B and g : B — C be arbitrary injections.

fa kg\mm»
oon
- az) g(f(a)



Theorem: If f: A - B is an injection and g : B —» C is an
injection, then the function g - f: A = C is also an
injection.

Proof: Let f: A - B and g : B — C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.

S %ﬂm»
oon
- az) g(f(a)

A B C



Theorem: If f: A - B is an injection and g : B —» C is an
injection, then the function g - f: A = C is also an
injection.

Proof: Let f: A - B and g : B — C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.
To do so, consider any a1, az € A where ax: # az.

W T >§ﬂm»
| Ge) |
- Ia>) g(f(a)

A B C



Theorem: If f: A - B is an injection and g : B —» C is an
injection, then the function g - f: A = C is also an
injection.

Proof: Let f: A - B and g : B — C be arbitrary injections. We

will prove that the function g - f: A — C is also injective.
To do so, consider any ai, az € A where a: # az. We will

prove that (g ° f)(a1) # (g ° f)(az).

fa %ﬂm»
oon
- Iaz) g(f(a)



Theorem: If f: A - B is an injection and g : B —» C is an
injection, then the function g - f: A = C is also an
injection.

Proof: Let f: A - B and g : B — C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.
To do so, consider any ai, az € A where a: # az. We will
prove that (g ° f)(a1) # (g ° f)(az). Equivalently, we need to
show that g(f(ai)) # g(f(a2)).

S %ﬂm»
oon
- Iaz) g(f(a)

A B C



Theorem: If f: A - B is an injection and g : B —» C is an
injection, then the function g - f: A = C is also an
injection.

Proof: Let f: A - B and g : B — C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.
To do so, consider any ai, az € A where a: # az. We will
prove that (g ° f)(a1) # (g ° f)(az). Equivalently, we need to
show that g(f(ai)) # g(f(a2)).

Since fis injective and a: # az, we see that f(ai1) # f(az).

S %ﬂm»
oon
- Iaz) g(f(a)

A B C



Theorem: If f: A - B is an injection and g : B —» C is an
injection, then the function g - f: A = C is also an
injection.

Proof: Let f: A - B and g : B — C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.
To do so, consider any ai, az € A where a: # az. We will
prove that (g ° f)(a1) # (g ° f)(az). Equivalently, we need to
show that g(f(ai)) # g(f(a2)).

Since fis injective and a: # az, we see that f(ai1) # f(az).
Then, since g is injective and f(ai1) # f(az), we see that

g(fla1)) # g(flaz)), as required.

S %ﬂm»
oon
- Ia>) g(f(a)

A B C



Theorem: If f: A - B is an injection and g : B —» C is an
injection, then the function g - f: A = C is also an
injection.

Proof: Let f: A - B and g : B — C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.
To do so, consider any ai, az € A where a: # az. We will
prove that (g ° f)(a1) # (g ° f)(az). Equivalently, we need to
show that g(f(ai)) # g(f(a2)).

Since fis injective and a: # az, we see that f(ai1) # f(az).
Then, since g is injective and f(ai1) # f(az), we see that

g(flai)) # g(flaz)), as required. W

S %ﬂm»
oon
- Ia>) g(f(a)

A B C



Theorem: If f: A - B is an injection and g : B —» C is an
injection, then the function g - f: A = C is also an
injection.

Proof: Let f: A - B and g : B — C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.
To do so, consider any ai, az € A where a: # az. We will
prove that (g ° f)(a1) # (g ° f)(az). Equivalently, we need to
show that g(f(ai)) # g(f(a2)).

Since fis injective and a: # az, we see that f(ai1) # f(az).
Then, since g is injective and f(ai1) # f(az), we see that

g(flai)) # g(flaz)), as required. W

fla) g(f(a1))

Great exercise: Repeat
this proof using the other
definition of injectivity,

@H
s




Theorem: If f : A - B is an injection and g : B —» C is an
injection, then the function g - f: A = C is also an
injection.

Proof: Let f: A - B and g : B — C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.
To do so, consider any ai, az € A where a: # az. We will
prove that (g ° f)(a1) # (g ° f)(az). Equivalently, we need to
show that g(f(ai)) # g(f(a2)).

Since fis injective and a: # az, we see that f(ai1) # f(az).
Then, since g is injective and f(ai1) # f(az), we see that

g(flai)) # g(flaz)), as required. W

g(f(a1))

This proof contains a f(a1)

no first—order logic >¥\

synfax (quantifiers, ) (*
connectives, efc,), It's

-
writfen in plain English, a: f(a )>’/

just as usual,




Theorem: If f : A - B is a surjection and
g : B = C is a surjection, then the function
ge°f:A - (Cis a surjection.

Proof: In the appendix!



Major Ideas From Today

* Proofs involving first-order definitions are heavily
based on the structure of those definitions, yet
FOL notation itself does not appear in the proot.

« Statements behave differently based on whether
you're assuming or proving them.

* When you assume a universally-quantified
statement, initially, do nothing. Instead, keep an
eye out for a place to apply the statement more
specifically.

« When you prove a universally-quantified
statement, pick an arbitrary value and try to
prove it has the needed property.



If you assume
this is true...

To prove that
this is true...

Vx. A

Initially, do nothing. Once you
find a z through other means,
you can state it has property A.

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Introduce a variable
x into your proof that
has property A.

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—- B

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Assume A is true, then
prove B is true.

ANMNB

Assume A. Also assume B.

Prove A. Also prove B.

AV B

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Either prove —A — B or
prove =B — A.
(Why does this work?)

Ao B

Assume A - Band B - A.

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.




Next Time

* Set Theory Revisited
 Formalizing our definitions.
 Proofs on Sets

 How to rigorously establish set-theoretic
results.



Appendix: Additional Function Proofs



Proof: Composing surjections
yields a surjection.



Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.



Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.

Proof:



Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.

Proof: Let f: A - B and g : B — C be arbitrary surjections.



Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.

Proof: Let f: A - B and g : B — C be arbitrary surjections.
We will prove that the function g - f: A - C is also
surjective.



Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.

Proof: Let f: A - B and g : B = C be arbitrary surjections.
We will prove that the function g - f: A - C is also
surjective.

What does it mean for g « £ : A - C to be surjective?




Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.

Proof: Let f: A - B and g : B = C be arbitrary surjections.
We will prove that the function g - f: A - C is also
surjective.

What does it mean for g « £ : A - C to be surjective?

VceC.3dae€eA. (g-° fla) =c




Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.

Proof: Let f: A - B and g : B — C be arbitrary surjections.
We will prove that the function g - f: A - C is also
surjective.

What does if mean tor g o« £ : A = C to be surjective?

VceC.3da€eA.(g-° f)la) =c

Theretore, we'll choose an arbitrary ¢ € C and prove thal there
is some a € A such that (g o f)(a) - c.




Theorem: If f : A - B is surjective and g : B — C is surjective,
then g - f: A = C is also surjective.

Proof: Let f: A - B and g : B = C be arbitrary surjections.
We will prove that the function g - f: A - C is also
surjective.

What does it mean tfor g o« £: A = C fo be surjective?

VceC.3da€A. (g° fla) =c

Theretore, we'll choose an arbitrary ¢ € C and prove that there
is some a € A such That (g o f)(a) - c,




Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A = C is also surjective.

Proof: Let f: A - B and g : B = C be arbitrary surjections.
We will prove that the function g - f: A - C is also
surjective.

What does it mean tfor g o« £: A = C fo be surjective?

VceC.3da€A. (g-°[)a) =c

Theretore, we'll choose an arbifrary ¢ € C and prove that there
is some a € A such That (g o 1)(a) - c,




Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A = C is also surjective.

Proof: Let f: A - B and g : B = C be arbitrary surjections.
We will prove that the function g - f: A - C is also
surjective.

What does it mean tfor g o« £: A = C fo be surjective?

VceeC.daeA. (g-°fa) =c

Theretfore, we'll choose an arbifrary ¢ € C and prove thal there
s some a € A such That (g o #)(a) - c.




Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.

Proof: Let f: A - B and g : B — C be arbitrary surjections.
We will prove that the function g - f: A - C is also
surjective. To do so, we will prove that for any ¢ € C, there
is some a € A such that (g - f)(a) = c.



Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.

Proof: Let f: A - B and g : B — C be arbitrary surjections.
We will prove that the function g - f: A - C is also
surjective. To do so, we will prove that for any ¢ € C, there
is some a € A such that (g - f)(a) = c¢. Equivalently, we
will prove that for any ¢ € C, there is some a € A such that

g(fla)) = c.



Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.

Proof: Let f: A - B and g : B — C be arbitrary surjections.
We will prove that the function g - f: A - C is also
surjective. To do so, we will prove that for any ¢ € C, there
is some a € A such that (g - f)(a) = c¢. Equivalently, we
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